Conditionals as representative inferences

Robert van Rooij & Katrin Schulz
Institute for Logic, Language and Computation
Amsterdam
Meaning of conditional sentences

Truth functional: Material Implication

1. Many problems: Irrelevance, Monotonicity, Contraposition, · · ·
2. Solutions: Relevance logic, Conditional Logics, Probability, · · ·
Meaning of conditional sentences

Truth functional: Material Implication

1 Many problems: Irrelevance, Monotonicity, Contraposition, · · ·
2 Solutions: Relevance logic, Conditional Logics, Probability, · · ·

Adams: ‘If A, then C’ is acceptable iff $P(C|A)$ is high

Widely accepted in Cognitive Science
Problems Adam’s thesis: Relevance matters

- High $P(C|A)$ is not sufficient: Dependency A and C
- If it is sunny today, $0 \neq 1$
- If it is sunny today, Real Madrid won the Champions League in 2017.

High $P(C|A)$ is not necessary. More than probability

- If you eat these mushrooms, it will kill you Warning
- If you won’t give me your wallet, I’ll kill you! Threat

Issue with conditional threats: credibility

Most probably you won’t kill me if I don’t give you my money. but still ···
Problems Adam’s thesis: Relevance matters

- High $P(C|A)$ is not sufficient: Dependency A and C

 * If it is sunny today, $0 \neq 1$
 * If it is sunny today, Real Madrid won the Champions League in 2017.

 High $P(C|A)$ is not necessary. More than probability

 If you eat these mushrooms, it will kill you

 Warning

 If you won’t give me your wallet, I’ll kill you!

 Threat

 Issue with conditional threats: credibility

 Most probably you won’t kill me if I don’t give you my money.

 but still···
Problems Adam’s thesis: Relevance matters

- High $P(C|A)$ is not sufficient: Dependency A and C

- High $P(C|A)$ is not necessary. More than probability

If it is sunny today, $0 \neq 1$

If you eat these mushrooms, it will kill you

Warning: If you won’t give me your wallet, I’ll kill you!

Issue with conditional threats: credibility

Most probably you won’t kill me if I don’t give you my money.

but still···
Problems Adam’s thesis: Relevance matters

- High $P(C|A)$ is not sufficient: Dependency A and C
 1. * If it is sunny today, $0 \neq 1$
 2. * If it is sunny today, Real Madrid won the Champions League in 2017.

- High $P(C|A)$ is not necessary. More than probability
Problems Adam’s thesis: Relevance matters

- High $P(C|A)$ is **not sufficient**: Dependency A and C
 1. * If it is sunny today, $0 \neq 1$
 2. * If it is sunny today, Real Madrid won the Champions League in 2017.

- High $P(C|A)$ is **not necessary**.
 More than probability

 Warning
 - If you eat these mushrooms, it will kill you
 - If you won’t give me your wallet, I’ll kill you!
Problems Adam’s thesis: Relevance matters

High $P(C|A)$ is not sufficient:

1. If it is sunny today, $0 \neq 1$
2. If it is sunny today, Real Madrid won the Champions League in 2017.

High $P(C|A)$ is not necessary.

If you eat these mushrooms, it will kill you
If you won’t give me your wallet, I’ll kill you!

Issue with conditional threats: credibility

Most probably you won’t kill me if I don’t give you my money.
but still ···
Relevance Logic no way out

- Relevance logics add notion of **aboutness** variable sharing

- And solve
 1. Paradoxes of Mat. Implication \((C \models A \rightarrow C \text{ and } \neg A \models A \rightarrow C)\)
 2. Paradoxes of Strict Implication \((\Box C \models A \Rightarrow C \text{ and } \Box \neg A \models A \Rightarrow C)\)

- But: it is not aboutness, but support that counts
Relevance Logic no way out

- Relevance logics add notion of **aboutness** variable sharing

- And solve
 1. Paradoxes of Mat. Implication ($C \models A \rightarrow C$ and $\neg A \models A \rightarrow C$)
 2. Paradoxes of Strict Implication ($\Box C \models A \Rightarrow C$ and $\Box \neg A \models A \Rightarrow C$)

- But: it is not aboutness, but support that counts

- What is needed seems **causality**?

- The antecedent helps to cause the consequent
Relevance Logic no way out

- Relevance logics add notion of aboutness
 variable sharing

- And solve
 1. Paradoxes of Mat. Implication ($C \models A \rightarrow C$ and $\neg A \models A \rightarrow C$)
 2. Paradoxes of Strict Implication ($\square C \models A \Rightarrow C$ and $\square \neg A \models A \Rightarrow C$)

- But: it is not aboutness, but support that counts

- What is needed seems causality?

- The antecedent helps to cause the consequent

- But ‘If John smokes, he is nervous’.
Relevance Logic no way out

- Relevance logics add notion of **aboutness** variable sharing

- And solve
 1. Paradoxes of Mat. Implication \((C \models A \rightarrow C \text{ and } \neg A \models A \rightarrow C)\)
 2. Paradoxes of Strict Implication \((\Box C \models A \Rightarrow C \text{ and } \Box \neg A \models A \Rightarrow C)\)

- But: it is not aboutness, but support that counts

- What is needed seems **causality**?

- The antecedent helps to cause the consequent

- But ‘If John smokes, he is nervous’.

- Evidential, not causal (consequent is **associated** with antecedent)
Association as Distinctiveness

- Pavlov (1920ties): conditioning i.t.o. co-occurrence
Association as Distinctiveness

- Pavlov (1920ties): conditioning i.t.o. co-occurrence

- Rescorla (1968): Rats learn a Tone → Shock association so long as the frequency of shocks following the tone is higher than the frequency of shocks experienced otherwise. **Contingency** \(\Delta P_{sh}^{tone} \)

\[\Delta P_{sh} = P(sh/t) - P(sh/\neg t) \]

- Gluck & Bower (1988): humans behave similarly. **Contingency** \(\Delta P_C^A \)

\[\Delta P_C^A = P(C/A) - P(C/\neg A) \]

- Is asymptotic result of learning via delta-rule (connectionism)

- Schanks, Cheng (1990ties)

March 7, 2018 5 / 21
Association as Distinctiveness

- Pavlov (1920ties): conditioning i.t.o. co-occurrence

- Rescorla (1968): Rats learn a Tone \rightarrow Shock association so long as the frequency of shocks following the tone is higher than the frequency of shocks experienced otherwise. **Contingency** $\Delta P_{\text{sh}}^{\text{tone}}$

\[\Delta P_t^{\text{sh}} = P(sh/t) - P(sh/\neg t) \]

- Gluck & Bower (1988): humans behave similarly

Causal learning
Association as Distinctiveness

- Pavlov (1920ties): conditioning i.t.o. co-occurrence

- Rescorla (1968): Rats learn a Tone → Shock association so long as the frequency of shocks following the tone is higher than the frequency of shocks experienced otherwise

 Contingency \(\Delta P_{sh}^{t} \)

 \[\Delta P_{sh}^{t} = P(sh/t) - P(sh/\neg t) \]

 Causal learning

- Gluck & Bower (1988): humans behave similarly

- Contingency: \(\Delta P_{C}^{A} = P(C/A) - P(C/\neg A) \)

 distinctiveness
Association as Distinctiveness

- Pavlov (1920ties): conditioning i.t.o. co-occurrence

- Rescorla (1968): Rats learn a Tone \rightarrow Shock association so long as the frequency of shocks following the tone is higher than the frequency of shocks experienced otherwise. Contingency $\Delta P_{\text{sh tone}}$

\[\Delta P_{sh}^{t} = P(sh/t) - P(sh/\neg t) \]

Causal learning

- Gluck & Bower (1988): humans behave similarly

- Contingency: $\Delta P_{A}^{C} = P(C/A) - P(C/\neg A)$ distinctiveness

- Is asymptotic result of learning via delta-rule (connectionism) Schanks, Cheng 1990ties
Prepare for future

- Why? In changing world crucial to track dependencies

- Conditionals express such dependencies
Distinctiveness as Representativeness

- \(\Delta P_A^C = P(C/A) - P(C/\neg A) \)

- is monotone increasing with (and thus has maximal elements in common)

- \(P(C/A) - P(C) \)

- \(\frac{P(C/A)}{P(C/\neg A)} \), and

- \(\frac{P(C/A)}{P(C)} \)
Contingency and Representativeness

- $\Delta P_A^C = P(C/A) - P(C/\neg A)$

- is monotone increasing with
 (and thus has maximal elements in common)

- $P(C/A) - P(C)$ proposed as measure of relevance/support

- $\frac{P(C/A)}{P(C/\neg A)}$, proposed as measure of stereotypicality

- $\frac{P(C/A)}{P(C)}$, proposed as measure of stereotypicality
Representativeness and Causality (Pearl, 2000)

- Lewis: A causes C: $A > C$ and $\neg A > \neg C$

- Pearl: Interpret ‘$>$’ in Causal Models i.t.o. intervention

- Probability that A causes C $\equiv P(A > C \land \neg A > \neg C)$
 $\equiv P(C_A \land \neg C_{\neg A})$

- Assume Monotonicity: $\equiv P(C_A) - P(C_{\neg A})$

- Assume Exogeneity: $\equiv P(C|A) - P(C|\neg A)$ \equiv Contingency (no common cause)
Proposal 1

- If A, then C' is appropriate only if $P(C|A) - P(C|\neg A) = \Delta P^C_A \gg 0$
Proposal 1

- If A, then C' is appropriate only if $P(C|A) - P(C|\neg A) = \Delta P_A^C \gg 0$

- This explains

 1. * If it is sunny today, $0 \neq 1$
 2. * If it is sunny today, Real Madrid won the Champions League in 2017.
Proposal 1

- If A, then C' is appropriate only if $P(C|A) - P(C|\neg A) = \Delta P_A^C \gg 0$

- This explains

 1. * If it is sunny today, $0 \neq 1$
 2. * If it is sunny today, Real Madrid won the Champions League in 2017.

- Other good consequences

 1. Proposal 1 \implies If \leadsto iff Conditional Perfection

 Affirming consequent: $A \rightarrow C, C \leadsto A$
 Denying antecedent: $A \rightarrow C, \neg A \leadsto \neg C$

But this is controversial

What about other cases?

1. (Ir)Relevance conditionals: If you are hungry, there is food in the fridge

2. Utility conditionals: If you won't give me your wallet, I'll kill you
Proposal 1

- If A, then C’ is appropriate only if $P(C|A) - P(C|\neg A) = \Delta P^C_A \gg 0$

- This explains
 1. * If it is sunny today, $0 \neq 1$
 2. * If it is sunny today, Real Madrid won the Champions League in 2017.

- Other good consequences
 1. Proposal 1 \(\Rightarrow\) If \(\sim\) iff Conditional Perfection
 - Affirming consequent: $A \rightarrow C$, $C \sim A$
 - Denying antecedent: $A \rightarrow C$, $\neg A \sim \neg C$
 2. Excluded Middle effect: $\neg (\text{If } A \text{ then } C) \approx \text{if } A, \text{ then } \neg C$
Proposal 1

- If A, then C' is appropriate only if $P(C|A) - P(C|\neg A) = \Delta P^C_A \gg 0$

- This explains
 1. * If it is sunny today, $0 \neq 1$
 2. * If it is sunny today, Real Madrid won the Champions League in 2017.

- Other good consequences
 1. Proposal 1 \Rightarrow If \rightsquigarrow iff Conditional Perfection
 Affirming consequent: $A \rightarrow C$, $C \rightsquigarrow A$
 Denying antecedent: $A \rightarrow C$, $\neg A \rightsquigarrow \neg C$
 2. Excluded Middle effect: $\neg (\text{If } A \text{ then } C) \approx \text{if } A, \text{ then } \neg C$
 3. Chater & Oaksford (1999): Wasow selection task $\rightsquigarrow \approx \Delta P^C_A$
 But this is controversial
Proposal 1

- If \(A \), then \(C' \) is appropriate only if \(P(C|A) - P(C|\neg A) = \Delta P_A^C \gg 0 \)

- This explains
 1. * If it is sunny today, \(0 \neq 1 \)
 2. * If it is sunny today, Real Madrid won the Champions League in 2017.

- Other good consequences
 1. Proposal 1 \(\Rightarrow \) If \(\sim \) iff Conditional Perfection
 2. **Affirming consequent**: \(A \rightarrow C, C \mid \sim A \)
 3. **Denying antecedent**: \(A \rightarrow C, \neg A \mid \sim \neg C \)
 4. **Excluded Middle effect**: \(\neg (\text{If } A \text{ then } C) \approx \text{if } A, \text{ then } \neg C \)
 5. Chater & Oaksford (1999): Wasow selection task \(\sim \approx \Delta P_A^C \)
 But this is controversial

- What about other cases?
 1. (Ir)Relevance conditionals: If you are hungry, there is **food** in the fridge
 2. Utility conditionals: If you won’t give me your wallet, I’ll **kill** you
Experimental tests + Amendment

- Result: \(\Delta P^C_A = P(C|A) - P(C|\neg A) \) isn’t quite right:

\[\Delta^* P^C_A = \Delta P^C_A - P(C|\neg A) \] (Proposal 1*) Cheng

Effects

1. Mostly similar to \(\Delta P^C_A \)
2. Distinctiveness
3. But \(\Delta^* P^C_A \) increases, if \(P(C|\neg A) \) increases e.g. if \(P(C|\neg A) = 0 \), \(\Delta^* P^C_A = 10 \times \Delta P^C_A \); \(P(C|A) \) counts for more than \(P(C|\neg A) \)

Modus Tollens less acceptable than Modus Ponens.
Experimental tests + Amendment

- Result: \(\Delta P^C_A = P(C|A) - P(C|\neg A) \) isn’t quite right:
 1. \(\Delta P^C_A \) must be > 0 for acceptance
Experimental tests + Amendment

- Result: \(\Delta P_A^C = P(C|A) - P(C|\neg A) \) isn’t quite right:
 1. \(\Delta P_A^C \) must be > 0 for acceptance
 2. but increase in \(P(C|A) \) more important than decrease in \(P(C|\neg A) \)
Experimental tests + Amendment

- Result: $\Delta P^C_A = P(C|A) - P(C|\neg A)$ isn’t quite right:
 1. ΔP^C_A must be > 0 for acceptance
 2. but increase in $P(C|A)$ more important than decrease in $P(C|\neg A)$

- New measure: $\Delta^* P^C_A = \frac{\Delta P^C_A}{1 - P(C|\neg A)}$ (Proposal 1*) Cheng
Experimental tests + Amendment

- Result: $\Delta P^C_A = P(C|A) - P(C|\neg A)$ isn’t quite right:
 1. ΔP^C_A must be > 0 for acceptance
 2. but increase in $P(C|A)$ more important than decrease in $P(C|\neg A)$

- New measure: $\Delta^* P^C_A = \frac{\Delta P^C_A}{1 - P(C|\neg A)}$ (Proposal 1*)

- Effects
 1. Mostly similar to Δ^C_A
 2. But $\Delta^* P^C_A$ increases, if $P(C|\neg A)$ increases
 e.g. if $P(C|\neg A) = 0.9$, $\Delta^* P^C_A = 10 \times \Delta P^C_A$

Distinctiveness
Experimental tests + Amendment

- Result: \(\Delta P_A^C = P(C|A) - P(C|\neg A) \) isn’t quite right:
 1. \(\Delta P_A^C \) must be > 0 for acceptance
 2. but increase in \(P(C|A) \) more important than decrease in \(P(C|\neg A) \)

- New measure: \(\Delta^* P_A^C = \frac{\Delta P_A^C}{1 - P(C|\neg A)} \) (Proposal 1*) Cheng

- Effects
 1. Mostly similar to \(\Delta_A^C \) Distinctiveness
 2. But \(\Delta^* P_A^C \) increases, if \(P(C|\neg A) \) increases
e..g if \(P(C|\neg A) = 0.9, \Delta^* P_A^C = 10 \times \Delta P_A^C \)
 \(\sim \) \(P(C|A) \) counts for more than \(P(C|\neg A) \)
Experimental tests + Amendment

- Result: \(\Delta P^C_A = P(C|A) - P(C|\neg A) \) isn’t quite right:
 1. \(\Delta P^C_A \) must be \(> 0 \) for acceptance
 2. but increase in \(P(C|A) \) more important than decrease in \(P(C|\neg A) \)

- New measure: \(\Delta^* P^C_A = \frac{\Delta P^C_A}{1 - P(C|\neg A)} \) (Proposal 1*)

- Effects
 1. Mostly similar to \(\Delta^C_A \) (Distinctiveness)
 2. But \(\Delta^* P^C_A \) increases, if \(P(C|\neg A) \) increases
 e.g if \(P(C|\neg A) = 0.9 \), \(\Delta^* P^C_A = 10 \times \Delta P^C_A \)
 \(\leadsto P(C|A) \) counts for more than \(P(C|\neg A) \)
 3. Modus Tollens less acceptable than Modus Ponens.
Utility conditionals

Examples

1. I’ll kill you, if you don’t give me your wallet
2. I give you €10, if you mow my lawn.

Problem of conditional threats: credibility

\[P(\text{kill} | \neg \text{give wallet}) \text{ is not high} \]

\[\iff \text{Adam’s thesis} \]
Utility conditionals

- **Examples**
 1. I’ll kill you, if you don’t give me your wallet
 Threat
 2. I give you €10, if you mow my lawn.
 Promise

- **Problem of conditional threats: credibility**
 \[P(\text{kill} \mid \neg \text{give wallet}) \text{ is not high} \]
 \[\Leftrightarrow \text{Adam’s thesis} \]

- But \[P(\text{kill} \mid \neg \text{give wallet}) - P(\text{kill} \mid \text{give wallet}) > 0, \]
 because \[P(\text{kill} \mid \text{give wallet}) \approx 0 \]
Utility conditionals

- **Examples**
 1. I’ll kill you, if you don’t give me your wallet
 2. I give you €10, if you mow my lawn.

- **Problem of conditional threats: credibility**

 \[P(\text{kill} | \neg \text{give wallet}) \text{ is not high} \]

 \[\Leftrightarrow \text{Adam’s thesis} \]

- **But** \[P(\text{kill} | \neg \text{give wallet}) - P(\text{kill} | \text{give wallet}) > 0 \]

 because \[P(\text{kill} | \text{give wallet}) \approx 0 \]

- **Distinctiveness counts**

 Contingency
Utility conditionals

- **Examples**
 1. I’ll kill you, if you don’t give me your wallet
 - Threat
 2. I give you €10, if you mow my lawn.
 - Promise

- **Problem of conditional threats: credibility**
 - $P(kill|\neg \text{give wallet})$ is not high
 - \Leftrightarrow Adam’s thesis

- But $P(kill|\neg \text{give wallet}) - P(kill|\text{give wallet}) > 0$, because $P(kill|\text{give wallet}) \approx 0$

- Distinctiveness counts

- but it is not enough....
From Contingency to Representativeness

Contingency: $\Delta P_{OC} = P(O/C) - P(O/\neg C)$

Fear Conditioning (see also Slovic on emotion and representation)

High Impact Outcomes are better learned and remembered.

How representative is O for C:

$\nabla P_{OC} = \Delta \left(\ast\right) P_{OC} \times \text{Impact}(O)$

$= \text{distinctiveness} \times \text{Impact}(f)$
Contingency: $\Delta P_C^O = P(O/C) - P(O/\neg C)$

Fear Conditioning (see also Slovic on emotion and representation)

High Impact Outcomes are better learned and remembered.
From Contingency to Representativeness

- Contingency: $\Delta P_C^O = P(O/C) - P(O/\neg C)$
- Fear Conditioning (see also Slovic on emotion and representation)

 High Impact Outcomes are better learned and remembered.
From Contingency to Representativeness

- Contingency: \(\Delta P^O_C = P(O/C) - P(O/\neg C) \)

- Fear Conditioning (see also Slovic on emotion and representation)
 High Impact Outcomes are better learned and remembered.

- How representative is \(O \) for \(C \): \(\nabla P^O_C = \Delta^{(\ast)} P^O_C \times \text{Impact}(O) \)
 \(= \text{distinctiveness} \times \text{Impact}(f) \)
Role of impact: proposal 2

Problems

1. \(P(\text{kill} | \neg \text{give wallet}) \succ P(\text{kill} | \text{give wallet}) \)
 Thus \(\Delta^C_A \succ 0 \)

2. Why threat/promise better (more credible), if more at stake?
Role of impact: proposal 2

- Problems
 1. \(P(\text{kill} | \neg \text{give wallet}) \gg P(\text{kill} | \text{give wallet}) \)
 2. Why threat/promise better (more credible), if more at stake?

- What counts:
 \(P(\text{kill} | \neg \text{give wallet}) \times \text{Impact(kill)} \gg P(\text{kill} | \text{give wallet}) \times \text{Imp(kill)} \)
Role of impact: proposal 2

- Problems
 1. \(P(\text{kill}|\neg \text{give wallet}) \gg P(\text{kill}|\text{give wallet}) \)
 2. Why threat/promise better (more credible), if more at stake?

- What counts:
 \[
P(\text{kill}|\neg \text{give wallet}) \times \text{Impact}(\text{kill}) \gg P(\text{kill}|\text{give wallet}) \times \text{Imp}(\text{kill})
 \]

- \(P(C|A) \times \text{Impact}(C) \gg P(C|\neg A) \times \text{Impact}(C) \) iff
 Distinctiveness of \(A \) versus \(\neg A \) on \(C \times \text{Impact}(C) \gg 0 \)
Role of impact: proposal 2

- Problems
 1. \(P(\text{kill} | \neg \text{give wallet}) \gg P(\text{kill} | \text{give wallet}) \)
 Thus \(\Delta^C_A \gg 0 \)
 2. Why threat/promise better (more credible), if more at stake?

- What counts:
 \[
 P(\text{kill} | \neg \text{give wallet}) \times \text{Impact}(\text{kill}) \gg P(\text{kill} | \text{give wallet}) \times \text{Imp}(\text{kill})
 \]

- \[
 P(C | A) \times \text{Impact}(C) \gg P(C | \neg A) \times \text{Impact}(C) \text{ iff }
 \]
 Distinctiveness of \(A \) versus \(\neg A \) on \(C \times \text{Impact}(C) \gg 0 \)

- Proposal 2: ‘If \(A \), then \(C \)’ is appropriate iff \(\Delta^{(*)} P_A^C \times \text{Impact}(C) \gg 0 \)
Problems

1. \(P(\text{kill}|\neg \text{give wallet}) \gg P(\text{kill}|\text{give wallet}) \)

2. Why threat/promise better (more credible), if more at stake?

What counts:

\[P(\text{kill}|\neg \text{give wallet}) \times \text{Impact(kill)} \gg P(\text{kill}|\text{give wallet}) \times \text{Imp(kill)} \]

\[P(C|A) \times \text{Impact}(C) \gg P(C|\neg A) \times \text{Impact}(C) \text{ iff} \]

Distinctiveness of \(A \) versus \(\neg A \) on \(C \times \text{Impact}(C) \gg 0 \)

Proposal 2: ‘If \(A \), then \(C \)’ is appropriate iff \(\Delta^{(*)} P_{A}^{C} \times \text{Impact}(C) \gg 0 \)

iff \(C \) is representative for \(A \)
Utility and Causality

- Conditionals
 1. Causal: If the patient is infected, then she has a fever
 2. Diagnostic: If the patient has a fever, then she is infected.

- For conditional threats/promises it is crucial that conditional reflects causal structure

Generalization to Relevance/Biscuit Conditionals

Data

1. If you are hungry, there is food in the fridge
2. * If you are hungry, there is beer in the fridge
Generalization to Relevance/Biscuit Conditionals

- **Data**
 1. If you are hungry, there is food in the fridge
 2. *If you are hungry, there is beer in the fridge

- Notice: now $P(C|A) = P(C|\neg A)$, and thus $\Delta P_A^C = 0$

- Thus $\Delta P_A^C \times Impact(C) = 0$
Generalization to Relevance/Biscuit Conditionals

- **Data**
 1. If you are hungry, there is food in the fridge
 2. *If you are hungry, there is beer in the fridge

- Notice: now $P(C|A) = P(C|\neg A)$, and thus $\Delta P_A^C = 0$

- Thus $\Delta P_A^C \times Impact(C) = 0$

- Assertion of consequent only relevant /of impact, if antecedent true
Generalization to Relevance/Biscuit Conditionals

- **Data**
 1. If you are hungry, there is **food** in the fridge
 2. * If you are hungry, there is **beer** in the fridge

- Notice: now \(P(C|A) = P(C|\neg A) \), and thus \(\Delta P_A^C = 0 \)

- Thus \(\Delta P_A^C \times Impact(C) = 0 \)

- Assertion of consequent only relevant /of impact, if antecedent true

\(\Rightarrow \quad Impact(C|A) - Impact(C|\neg A) \) is high.
Generalization to Relevance/Biscuit Conditionals

Data
1. If you are hungry, there is food in the fridge
2. * If you are hungry, there is beer in the fridge

Notice: now \(P(C|A) = P(C|\neg A) \), and thus \(\Delta P^C_A = 0 \)

Thus \(\Delta P^C_A \times \text{Impact}(C) = 0 \)

Assertion of consequent only relevant /of impact, if antecedent true

\(\Rightarrow \quad \text{Impact}(C|A) - \text{Impact}(C|\neg A) \) is high.

Proposal 3: 'If \(A \), then \(C \)' appropriate
iff \(P(C|A) \times \text{Imp}(C|A) \gg P(C|\neg A) \times \text{Imp}(C|\neg A) \)
Special cases

- **Proposal 3:** 'If A, then C’ appropriate

 iff $P(C|A) \times \text{Imp}(C|A) \gg P(C|\neg A) \times \text{Imp}(C|\neg A)$
Special cases

- **Proposal 3:** 'If A, then C' appropriate

 iff $P(C|A) \times \text{Imp}(C|A) \gg P(C|\neg A) \times \text{Imp}(C|\neg A)$

- if $\text{Imp}(C|A) = \text{Imp}(C|\neg A) = \text{Imp}(C)$, $\sim \Delta P_A^C \times \text{Imp}(C) \gg 0$

 (Proposal 2)
Special cases

- **Proposal 3**: 'If A, then C' appropriate
 \[\text{iff } P(C|A) \times \text{Imp}(C|A) \gg P(C|\neg A) \times \text{Imp}(C|\neg A) \]

- if $\text{Imp}(C|A) = \text{Imp}(C|\neg A) = \text{Imp}(C)$, $\sim \Delta P_{A}^{C} \times \text{Imp}(C) \gg 0$ (Proposal 2)

- If also $\text{Impact}(C) = 1$, $\sim P(C|A) - P(C|\neg A) = \Delta_{A}^{C} \gg 0$ (Proposal 1)
How general?

- Swanson (2013). Biscuit conditionals can also be subjunctive.

- I want to vacation in a posh hotel in London. We would have tea every afternoon, and there would be biscuits on the sideboard, if you’re into that sort of thing.

- Iatridou (1991). Biscuit conditionals special in three ways:
 1. obligatory absence of conditional ‘then’; (but see J. Zakkou)
 2. consequent cannot c-comment antecedent;
 3. inability antecedents to serve as first constituents in V2 languages

- Swanson: all this holds also for subjunctive biscuits.
Conditionals and Generics

- Conditionals (with when-clauses)
 - About specific events (episodic)
 - Mary left, when George came back.
 - When I entered the room, Anna was knitting
Conditionals and Generics

Conditionals (with when-clauses)

1. About *specific* events (episodic)
 - Mary left, when George came back.
 - When I entered the room, Anna was knitting

2. Generic conditionals
 - John smokes, if/when he is nervous
 - Bears are intelligent, if/when they have blue eyes
Conditionals and Generics

- **Conditionals** (with when-clauses)
 1. About *specific* events (episodic)
 1. Mary left, when George came back.
 2. When I entered the room, Anna was knitting

- **Generic conditionals**
 1. John smokes, if/when he is nervous
 2. Bears are intelligent, if/when they have blue eyes

- **Generic conditionals**
 1. Counterfactual: If he were nervous, John would have smoked
 2. Non-causal: If John smoked, he was nervous.
 3. Future-oriented: John will smoke, if he will be nervous
Semantics for Generics

- Analyze generic conditionals like \(\cdots \) generics
Semantics for Generics

- Analyze generic conditionals like \(\cdots \) generics
- Conditional analysis: Birds fly \(\sim \) if it is a Bird, then it flies

\[P(F/B) \] high or if \(x \) normal bird, then \(x \) flies

But: for generic \(G \)'s are \(f \) to be true, this is not sufficient: *Germans are right-handed* not necessary: Birds lay eggs, Sharks attack, Mary murders children

It is about distinctiveness \(\Delta_f G \) and impact 'G's are \(f \)' true iff \(\approx \Delta^*(P_f G \times \text{Impact}(f)) \) high if \(f \) is a representative feature for \(G \)

March 7, 2018 20 / 21
Semantics for Generics

- Analyze generic conditionals like \(\cdots \) generics

- Conditional analysis: Birds fly \(\sim \) if it is a Bird, then it flies

- Standard: \(P(F/B) \) high \(\text{or} \) if \(x \) normal bird, then \(x \) flies
Semantics for Generics

• Analyze generic conditionals like ... generics

• Conditional analysis: Birds fly \sim if it is a Bird, then it flies

• Standard: $P(F/B)$ high or if x normal bird, then x flies

• But: for generic ‘Gs are f’ to be true, this is
Analyze generic conditionals like \ldots generics

Conditional analysis: Birds fly \(\sim\) if it is a Bird, then it flies

Standard: \(P(F/B)\) high or if \(x\) normal bird, then \(x\) flies

But: for generic ‘Gs are \(f\)’ to be true, this is
\begin{enumerate}
 \item not sufficient: *Germans are right-handed
 \item not necessary: Birds lay eggs, Sharks attack, Mary murders children
\end{enumerate}
Semantics for Generics

- Analyze generic conditionals like \(\cdots \) generics

- Conditional analysis: Birds fly \(\sim \) if it is a Bird, then it flies

- Standard: \(P(F/B) \) high or if \(x \) normal bird, then \(x \) flies

- But: for generic ‘Gs are \(f \)’ to be true, this is
 1. not sufficient: *Germans are right-handed
 2. not necessary: Birds lay eggs, Sharks attack, Mary murders children

- It is about distinctiveness \((\Delta^f_G) \) and impact
Semantics for Generics

- Analyze generic conditionals like \(\cdots \) generics

- Conditional analysis: Birds fly \(\sim \) if it is a Bird, then it flies

- Standard: \(P(F/B) \) high or if \(x \) normal bird, then \(x \) flies

- But: for generic ‘Gs are \(f \)’ to be true, this is
 1. not sufficient: *Germans are right-handed
 2. not necessary: Birds lay eggs, Sharks attack, Mary murders children

- It is about distinctiveness \((\Delta^f_G) \) and impact

- ‘Gs are \(f \)’ true \(\iff \approx \Delta(\ast) P^f_G \times \text{Impact}(f) \) high
 \(\iff \) \(f \) is a representative feature for \(G \)
Conclusion

- Same analysis in terms of **representativeness** for
Conclusion

- Same analysis in terms of representativeness for

 - Generics (and habituals)
Conclusion

- Same analysis in terms of representativeness for
 1. Generics (and habituals)
 2. Generic conditionals
Conclusion

- Same analysis in terms of representativeness for
 1. Generics (and habituas)
 2. Generic conditionals
 3. Conditionals threats/promises
Conclusion

- Same analysis in terms of *representativeness* for

 1. Generics (and habituals)
 2. Generic conditionals
 3. Conditionals threats/promises
 4. Biscuit conditionals
Conclusion

- Same analysis in terms of **representativeness** for
 1. Generics (and habituals)
 2. Generic conditionals
 3. Conditionals threats/promises
 4. Biscuit conditionals

- It is all about **distinctiveness/correlation** and **impact**
Conclusion

- Same analysis in terms of **representativeness** for
 1. Generics (and habituals)
 2. Generic conditionals
 3. Conditionals threats/promises
 4. Biscuit conditionals

- It is all about **distinctiveness/correlation and impact**

- It is all about **representativeness**